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A B S T R A C T   

Background: Indirect derivation of reference intervals (RIs) from the laboratory information system (LIS) has been 
recently pursued. We aimed at evaluating the accuracy of indirectly predicted RIs compared to the RIs estab-
lished directly from healthy subjects in the nationwide RI study in Turkey, targeting 25 major chemistry analytes. 
Methods: LIS data were retrieved from the laboratory that performed measurements for the direct study. They 
were cleaned by limiting to outpatients with age 18–65 years, and by allowing only one record per year per 
patient. Evaluated were four indirect methods of univariate approach: Hoffmann, Bhattacharya, Arzideh, and 
Wosniok methods. Power transformation of the LIS dataset was performed either using the power (λ) reported by 
the IFCC global RI study (the first two methods) or using a λ predicted (the last two). 
Results: Compared to the direct study dataset, the LIS dataset showed a variable degree of alterations in peak 
location and shape. Consequently, lower-side peak-shifts observed in sodium, albumin, etc. led to lowered RI 
limits, whereas higher-side peak-shift observed in triglyceride, low-density lipoprotein cholesterol, etc. led to 
raised RI limits. Overall, 72% (62–81) of the RI limits predicted by indirect methods showed significant biases 
from direct RIs. However, the biases observed in total cholesterol, lactic dehydrogenase, etc. were attributed to a 
higher-side age-bias in LIS dataset. After excluding them, the overall proportion of biased RIs was reduced to 
47% (38–54). 
Conclusion: To reduce prediction biases that remained after age adjustment, it is necessary to apply more rigorous 
data-cleaning before applying indirect methods.   

1. Introduction 

The recommended process for producing reference intervals (RI) is 
the direct method with a priori selection of members of the reference 
population as described in the international guideline issued by the 

Clinical and Laboratory Standards Institute (CLSI) [1]. This process, 
however, is extremely difficult to carry out properly. For reproducible 
results, it requires recruitment of a large number of well-defined healthy 
individuals, ideally by conducting a multicenter study [2] as well as 
specification of proper schemes for specimen collection and handling, 
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measurement, and comprehensive source-of-variation analyses and 
exclusion of inappropriate results before final determination of RIs. 
These processes are very time-consuming, and there are major costs 
incurred for every step of the process. Ethical clearance of the study may 
also consume substantial time. For smooth implementation of the study, 
significant efforts are required to obtain collaboration among re-
searchers and any supportive diagnostic companies. Consequently, there 
have been many alternative proposals to make use of routine laboratory 
data stored in the laboratory information system (LIS) for deriving RIs, 
so called a posteriori or indirect method [3]. 

An early indirect method was described by Hoffman [4] in 1963, 
when computer-based data analysis is in its primitive stage without 
much theoretical knowledge about distribution of laboratory data. 
Hoffman observed that the distribution of routine test results, regardless 
of the analyte, has a central smooth-looking peak, which could be 
assumed to represent “normal” values and approximate a Gaussian 
distribution. Hence, he proposed to use a probability paper plot to 
dissect the peak and by manual linear regression of its central segment, 
and then to determine the limits of RI by extrapolation of the line. A 
problem of this method was that the assumption was always Gaussian, 
without considering other distribution patterns. In 1967, Bhattacharya 
[5] developed another graphical method to identify one or more 
Gaussian peaks in the histogram of observed data. This method has been 
applied to laboratory data assigning the largest peak to represent the 
reference population and to derive RIs. However, with improved 
knowledge on the distribution of reference values (RVs), transformation 
of the raw data to a Gaussian shape is acknowledged to be the essential 
procedure in applying the Hoffman and Bhattacharya methods [6,7]. 

Recently, Arzideh et al. [8] proposed to apply a power trans-
formation of the source data by use of Box-Cox formula. Their method 
features an iterative algorithm to find the best truncation segment of RV 
distribution and to estimate the parameters of the corresponding dis-
tribution that best fits to the central “non-disease” segment via the 
maximum likelihood method, and thus named “truncated maximum 
likelihood” (TML) method. Truncated minimum chi-square (TMC) 
method was subsequently developed by Wosniok and Haeckel [9], 
which follows the same strategy as TML method except for an improved 
estimation of λ with more reliable testing for normality of the central 
truncated segment. 

In recent years, the above-described methods of univariate approach 
are proposed for use in the indirect derivation of RIs [3]. However, the 
validation of those methods by simultaneous comparison of RIs with 
those by the a priori (direct) method has not been available so far. 
Another concern after reviewing the papers proposing those methods 
was inconsistencies in the efforts for pre-cleansing LIS source data to 
minimize unwanted over-representation of disease groups with over-
lapping results. 

With these backgrounds, members of the International Federation of 
Clinical Chemistry and Laboratory Medicine (IFCC) Committee on 
Reference Intervals and Decision Limits (C-RIDL) launched a project of 
scientifically validating each proposed method. The best scheme is to 
conduct a direct RI study ensuring sufficient sample size based on well- 
designed protocol, and to perform an indirect study in parallel using the 
LIS source data from the same clinical laboratory that provided assays 
for the direct study. Such circumstances were available in Turkey, which 
conducted a nationwide study for establishing RIs for chemistry analytes 
as a part of the global multicenter RI study [2]. No regional differences 
in reference values were observed in any analyte. Therefore, we 
retrieved a LIS dataset for the corresponding time period from the cen-
tral laboratory and derived the RIs by four recently advocated indirect 
methods to evaluate their accuracy in predicting the RIs established by 
the direct study. 

2. Methods 

2.1. Source dataset for the direct method 

The source data served for the direct methods were those obtained at 
the time of global multicenter RI study [13]. Blood samples were 
collected nationwide from 28 laboratories located in seven regions 
(≥400 samples/region, 3066 in all) in 2011–2012. We applied the in-
clusion and exclusion criteria described in the C-RIDL harmonized 
protocol [10]. The sex and age distributions for the target age of 18 to 65 
were made nearly equal as shown in Table 1. 

The sera were collectively measured for 25 analytes listed below in 
Uludag University in Bursa using Abbott reagents and analyzer (Archi-
tect 8000®, Abbott Diagnostics, IL, USA). By ANOVA, we confirmed no 
obvious between-region differences in test results. 

Analytes comprised total protein (TP), albumin (Alb), urea, uric acid 
(UA), creatinine (Cre), total bilirubin (TBil), direct bilirubin (DBil), 
glucose (Glu), total cholesterol (TC), triglyceride (TG), high density li-
poprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL- 
C), sodium (Na), potassium (K), chloride (Cl), calcium (Ca), inorganic 
phosphate (IP), magnesium (Mg), aspartate aminotransferase (AST), 
alanine aminotransferase (ALT), lactate dehydrogenase (LDH), alkaline 
phosphatase (ALP), gamma glutamyl transferase (GGT), creatine kinase 
(CK), amylase (AMY). For the assay, reference materials were measured 
for standardization of all the test results. Internal (Abbott Diagnostics, 
IL, USA) and External Quality Assurance Services (Bio-Rad EQAS) have 
been assessed to ensure the accuracy and stability of the test results. 

2.2. Source dataset for indirect methods 

We retrieved test results for 25 analytes measured, also by use of the 
Abbott analyzer, between 2011 and 2016 (6 years) from the LIS in the 
Clinical Laboratory of Uludag University Hospital. The age range of the 
source data was restricted to 18–65 years. 

2.2.1. Preliminary data-cleaning 
Then, we applied the following two measures of cleaning the data 

following the recommendation by Jones [3]. (1) After exclusion of test 
results of inpatients, only outpatient results were included except for 
those ordered from outpatient clinics specialized in emergency, 
oncology, anesthesiology and reanimation, gastroenterology, and 
nephrology. (2) If multiple records per year existed per patient, all re-
cords of the year were excluded except for single/first result, with an 
assumption that the necessity of multiple testing implies higher chances 
of non-healthy status. Stepwise changes in the data sizes following each 
exclusion procedure are shown in Table 2. 

After this selection process, sex and age breakdown of the source 
data is shown for each analyte in Suppl. Table 1 and its total for all 
analytes combined are shown in Table 1. 

2.2.2. Gaussian transformation of source data 
In derivation of RIs by any indirect method or in applying Tukey 

outlier detection method, it is necessary to perform Gaussian trans-
formation of source dataset as much as possible by use of Box-Cox power 
transformation: X = (xλ − 1)/λ, where X represents transformed value of 
x using the power λ. In this collaborative study, to facilitate the search 
for appropriate λ, the λ values reported by C-RIDL [11] that are listed in 
Suppl. Table 2 were made available for the methods that do not include 
any algorithm for estimation of parameters including λ. The reported λ 
values were obtained in the C-RIDL global multicenter study on refer-
ence values [11] as an analyte-by-analyte average of λs for 20 distri-
butions (10 countries × 2 genders). For DBil, λ was not available and 
thus set to 0.25 that was used in the nationwide Turkish study [10]. 
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2.3. Methods for derivation of RIs 

2.3.1. Direct methods 

2.3.1.1. Nonparametric method by CLSI: D-NP-CLSI. This method cor-
responds to the procedure recommended in the CLSI guideline [1]. The 
RI was derived, by nonparametric method, as the central 95% range of 
RVs. No measure for secondary exclusion was performed. Ninety % 
confidence interval (CI) was estimated by the bootstrap method through 
repeated resampling of 50 times. The final RI was set to the average of 
repeatedly derived LLs and ULs. This bootstrap procedure for 90% CI 
estimation was also applied to the other parametric methods. 

2.3.1.2. Parametric method without LAVE: D-P-LAVE(-). Parametric 
method was based on modified Box-Cox formula with two parameters 
representing power (λ) and the origin of transformation (a) [12]. 

X =
(x − a)λ

− 1
λ  

where x and X represent test results before and after the transformation. 
Maximum likelihood method was used for first estimating ‘λ’, followed 
by estimation of ‘a’. This two-step estimation was performed iteratively 
until an optimal solution was obtained. Then, mean and SD under the 
transformed scale (mT, SDT) were computed after excluding values 
outside mean ± 2.81SD (0.005% of data in tails) once. RI limits (lower 
limit: LL; upper limit: UL) under the transformed scale (LLT ~ ULT) was 
reverse transformed to the original scale (LL ~ UL).  

LLT = mT − 1.96SDT                                                                             

ULT = mT + 1.96SDT                                                                             

LL = (λ × LLT + 1)1/λ + a                                                                     

UL = (λ × ULT + 1)1/λ + a                                                                   

Table 1 
Sex and age distribution of source data used in the direct and indirect methods.  

Age grp 18–29 30–39 40–49 50–59 60–65 Sum Ave of age SD of age 

For direct methods 
Male n 348 414 368 259 87 1476 39.6 11.6 

% 23.6 28.0 24.9 17.5 5.9 50.2 
Female n 378 389 371 250 79 1467 38.8 11.8 

% 25.8 26.5 25.3 17.0 5.4 49.8 
Sum n 726 803 739 509 166 2943 39.2 11.7 

% 24.7 27.3 25.1 17.3 5.6 100  

For indirect methods Data after two-step exclusion     
Male n 159,686 169,769 192,165 238,180 171,512 931,312 45.4 14.1 

% 17.1 18.2 20.6 25.6 18.4 36.5 
Female n 242,408 310,911 364,901 447,322 255,450 1,620,992 47.5 12.7 

% 15.0 19.2 22.5 27.6 15.8 63.5 
Sum n 402,094 480,680 557,066 685,502 426,962 2,552,304 46.6 13.3 

% 15.8 18.8 21.8 26.9 16.7 100  

Table 2 
Changes in sizes of LIS source dataset of 25 analytes after two-step data cleaning.  

Analyte Changes in data size Male-female ratio after cleaning 

Total Limited to outpatients % Limited to n = 1/patient % n (Male) % n (Female) % 

TP 701,789 380,108  54.2 66,144  9.4 24,788  37.5 41,356  62.5 
Alb* 957,568 526,031  54.9 79,893  8.3 29,236  36.6 50,657  63.4 
Urea 1,074,176 646,211  60.2 128,393  12.0 47,655  37.1 80,738  62.9 
UA 1,797,796 1,060,311  59.0 170,727  9.5 62,062  36.4 108,665  63.6 
Cre 719,926 385,845  53.6 81,697  11.3 29,020  35.5 52,677  64.5 
TBil 1,800,268 1,085,770  60.3 223,798  12.4 80,758  36.1 143,040  63.9 
DBil 838,006 450,255  53.7 57,954  6.9 21,607  37.3 36,347  62.7 
Glu 793,421 427,421  53.9 55,683  7.0 20,605  37.0 35,078  63.0 
TC 557,184 384,111  68.9 188,268  33.8 67,544  35.9 120,724  64.1 
TG 439,287 295,817  67.3 99,150  22.6 37,963  38.3 61,187  61.7 
HDL-C 432,031 291,589  67.5 97,764  22.6 37,482  38.3 60,282  61.7 
LDL-C 395,781 264,831  66.9 89,427  22.6 34,124  38.2 55,303  61.8 
Na 376,633 251,058  66.7 84,747  22.5 31,804  37.5 52,943  62.5 
K 1,771,379 1,425,836  80.5 175,702  9.9 64,196  36.5 111,506  63.5 
Cl* 1,797,393 1,059,911  59.0 170,698  9.5 61,890  36.3 108,808  63.7 
Ca 1,707,571 1,004,155  58.8 158,036  9.3 54,187  34.3 103,849  65.7 
IP 352,232 153,164  43.5 18,762  5.3 5,500  29.3 13,262  70.7 
Mg* 440,190 215,561  49.0 16,825  3.8 5,332  31.7 11,493  68.3 
AST 2,088,568 1,209,640  57.9 240,435  11.5 86,350  35.9 154,085  64.1 
ALT 2,108,477 1,220,780  57.9 183,152  8.7 65,912  36.0 117,240  64.0 
LDH* 443,989 229,236  51.6 41,226  9.3 15,469  37.5 25,757  62.5 
ALP 209,681 129,080  61.6 55,860  26.6 19,749  35.4 36,111  64.6 
GGT 263,368 175,430  66.6 40,321  15.3 16,925  42.0 23,396  58.0 
CK 239,873 129,477  54.0 23,587  9.8 9,446  40.0 14,141  60.0 
AMY* 103,174 58,338  56.5 4,055  3.9 1,708  42.1 2,347  57.9  

Total 22,409,761 13,459,966  60.1 2,552,304  11.4 931,312  36.5 1,620,992  63.5  

* Data of the analytes were not served for the method comparison study due to between-year bias in measurements.  
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In this method, a preliminary procedure of secondary exclusion of 
abnormal results, called latent abnormal values exclusion (LAVE) 
method [11,12] described below, was not applied. 

The RI derived by this method was set as a reference in measuring 
between-method bias of LL or UL, because of known problem of D-NP- 
CLSI regarding its susceptibility to outlying points and low precision 
(wider confidence intervals) of RI limits [11,13]. 

2.3.1.3. Parametric method with LAVE: D-P-LAVE(+). The same para-
metric method as above was used, but the LAVE procedure was applied 
in the iterative calculation to reduce the influence of common abnormal 
results attributable to highly prevalent nutritional abnormalities or to 
non-basal conditions prior to the sampling. The following eight nutri-
tional/muscular markers were set as reference tests used for judging 
inappropriate results: Alb, UA, TG, AST, ALT, LDH, GGT, and CK. If any 
individual has two or more abnormal results among the reference tests 
other than the one under derivation of the RI, the value of that indi-
vidual was excluded from the calculation [12]. The RI derived by this 
method was regarded as the primary reference when the D-P-LAVE(-) 
gave a wider RI as an indication of influence from latent abnormal 
values. 

2.3.1.4. Parametric calculation using Tukey’s outlier detection method: D- 
P-Tukey. This method assumes that there are no abnormal values within 
the Tukey range (LL ~ UL) specified by the formula below and thus 
regards the range as the RI [9]. The distribution of the source data was 
first made close to Gaussian by applying the Box-Cox transformation [X 
= (xλ − 1)/λ] using the fixed power (λ) for each analyte as described 
above. By use of transformed values, 25 and 75 percentile points (Q1

T, 
Q3

T, respectively) was calculated. Subsequently, the following Tukey’s 
outlier range (LLT ~ ULT) were regarded as corresponding to limits of RI 
in the transformed scale.  

LLT = Q1
T − (Q3

T − Q1
T) × 1.5                                                                 

ULT = Q3
T + (Q3

T − Q1
T) × 1.5                                                                

Finally, LT and UT were reverse transformed to obtain the limits of RI 
(L ~ U) in the original scale using the following formulae.  

LL = (λ × LLT + 1)1/λ                                                                           

UL = (λ × ULT + 1)1/λ                                                                          

2.3.2. Indirect methods 

2.3.2.1. Hoffman method: ID-Hoff. The assumption and procedures are 
the same as just described above except that quantile–quantile (Q-Q) 
plot was used and the linear segment was determined by visual in-
spection as in the original method [4]. Data was analyzed after the same 
transformation that was used for the Bhattacharya method (see below) 
with the same limitations on reporting. The analysis was performed 
using a spreadsheet application (Microsoft Excel) developed by one of 
the authors (G. Jones). In addition to the selection of λ, the selection of 
the range of data to include in the Gaussian model was made by the 
author. 

2.3.2.2. Bhattacharya method: ID-Bhat. This method assumed that the 
distribution of the LIS source data consists of at least one Gaussian 
distribution, with the predominant one representing healthy subjects. A 
graphical method is used to identify this central distribution [5]. Data 
was analyzed with no transformation if a good fit with the data was 
obtained. Otherwise a Box-Cox transformation was used with either the 
λ identified from direct studies as described above, or a λ selected for the 
best fit. For some analytes a different λ was used for males and females. If 

the λ for best fit was a negative number, the RI was not derived as this 
implies a healthy subgroup could not be separated from those results 
likely to be affected by disease or other factors. The analysis was per-
formed using a spreadsheet application (Microsoft Excel) developed by 
one of the authors (G. Jones). In addition to the selection of λ, the se-
lection of bin size and bin location of the histogram and the range of data 
to include were made manually by the author. 

2.3.2.3. Arzideh method: ID-TML. The method assumes that the central 
part of the distribution of patients’ test results represents the non-disease 
(“healthy”) population, which can be modelled by the power normal 
(PN) distribution family, if appropriately truncated on both sides of the 
peak, using a Box-Cox transformation function. X = xλ − 1

λ (λ: power, X: 
power-transformed value x) [8]. 

The parameters of the PN distribution (µ, σ, λ) are estimated using 
the maximum likelihood method. A goodness-of-fit statistic (modified 
Kolmogorov-Smirnov (KS) statistic consisting of two terms, a two-sided 
KS for the goodness of the truncation interval and a one-sided KS for the 
goodness out of the truncation interval) was used to find an optimized 
interval for truncating the central part of the distribution. Then, the 
estimated PN distribution (characterized by λ, mean (μ), and SD (σ)) is 
used to determine the central 95% interval of the PN distribution rep-
resenting the non-pathological values [8]. 

2.3.2.4. Wosniok method: ID-TMC. This truncated minimum chi-square 
(TMC) method is basically the same as the above-described method that 
depends on dissecting the central segment by fitting a PN distribution 
[9]. The procedures for parameter fitting were improved as follows. 
After stratification of source data by sex and age, an initial estimate of 
the PN distribution parameters λ, mean (μ), and SD (σ) were obtained by 
use of Q-Q plots based on Hoffmann’s method [4,14]. The estimates 
were then optimized by adjusting the truncation interval in reference to 
the goodness-of-fit using chi-square statistics computed for the trun-
cated segments. Finally, RIs for each stratum were estimated by use of 
the final fitted parameters as described above [8]. 

The members and associated members of C-RIDL collaborated and 
took charge of determining RIs by use of the following methods: T. 
Streichert, two German indirect methods (TML and TMC); G. Jones, 
indirect derivation using Hoffman and Bhattacharya methods; Y. 
Ozarda, direct derivation using Tukey’s outlier detection method; K. 
Ichihara, direct derivation using a combination of parametric/ 
nonparametric method with/without the LAVE method [11]. 

2.4. Assessment of differences in RI limits 

To assess the practical significance of between-method differences in 
RIs, a bias ratio (BR) specified below was calculated at LL, median (Me), 
and UL of the RI determined by a given method. 

BRLL =
LL − LL0

SDRI
,BRMe =

Me − Me0

SDRI
,BRUL =

UL − UL0

SDRI
;SDRI =

UL0 − LL0

3.92 

where LL0, Me0, and UL0 respectively represent LL, Me, and UL 
determined by D-P-LAVE(-) that was set as a ‘reference’. Because the 
denominator of the BR (SDRI) corresponds to between-individual SD, its 
threshold was set to 0.375 according to the conventional specification of 
allowable bias at the minimum level [15]. As an exception to this 
scheme, D-P-LAVE(+) was set to a ‘reference’ when the effect of the 
LAVE method was not negligible in adjusting the RI limits in terms of BR. 

3. Results 

3.1. Data size of the LIS dataset before and after data cleaning 

As a pre-processing of the LIS source dataset, two step cleansing 
procedures as recommended by Jones [3] was applied. The total data 
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Fig. 1. Comparison of RIs for males by 8 calculation methods D-, ID- = direct, indirect methods. NP-, P- = nonparametric, parametric method; CLSI = CLSI 
guideline; LAVE = latent abnormal values exclusion method: Tukey = Tukey’s outlier detection; Hoff = Hoffman method; Bhat = Bhattacharya method; TML =
truncated maximum likelihood method by Arzideh; TMC = truncated minimum chi-square method by Wosniok; RIs derived for males (M) by 8 calculation methods 
were compared. RI by D-P-LAVE(-) is shown by green-shade as a reference for comparison for all analytes except for AST, ALT, and GGT, for which RI by D-P-LAVE 
(+) was set as a reference shown by a blue shade. RIs derived for females and males + females are shown collectively in Suppl Fig. 2. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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size retrieved from the LIS for the 6-year period were 22,409,761. After 
limiting the data to those from outpatients and limiting special clinical 
departments as described in the Methods were 13,459,966 (60.1% of 
total data). To avoid duplicate records, the dataset was further restricted 
to allow only one record per year per patient. Hence, the final data size 
was 2,552,304 (11.4% of total data). The proportion of test results 
excluded per analyte by the cleaning procedure ranged from Mg (3.8%) 
to TC (33.8%). The stepwise changes in the data sizes are as shown in 
Table 2. 

3.2. Time-serial analysis for assessing between-year variations of the 
assays 

For confirming the long-term stability of assays, the LIS data for the 
study period of six-years (2011–2016) were retrieved after restricting to 
records that contained simultaneously tested results for ≥12 analytes 
out of the 25 targeted ones in this study. Then, each record was checked 
for a number of abnormal results in reference to the RIs currently in use 
in the laboratory. Any row of record with more than 3 abnormal results 
among the 25 analytes were deleted from the dataset. Then, this “mul-
tivariately normal” (MN) dataset was stratified by the date of mea-
surement into every-six-month blocks and average of MN (AoMN) of 
each block was calculated for each analyte as tabulated in Suppl. Table 
3. A bias of average of AoMN for the first two years (P1: 2011–2012), 
when the direct study was conducted, was computed from average of 
AoMN for the entire period (P2: 2011–2016) by the following formula, 
in analogy with the bias ratio (BR) described above: 

bias ratio (BR)=
|average of AoMN for P1− average of AoMN for P2|

SDRI  

where SDRI represents standard deviation comprising the RI, or (UL −

LL)/3.92. 
A threshold for |BR| was again set to 0.375 based on the conventional 

specification of allowable analytical bias [15]. The fluctuations of AoMN 
were graphically analyzed as shown in Suppl. Fig. 1. Based on this 
analysis, we decided to exclude datasets for Cl, Mg, and AMY, with 
respective BR of 0.374, 0.865, and 0.386, from the subsequent analyses. 

3.3. Comparison of RIs across eight methods of calculation 

Suppl. Fig. 2 presents bar-chart comparison of the RIs derived by 8 
methods for all 22 analytes in three ways for male (M) + female (F), M, 
and F. The representative graphs comparing RIs for males were shown in 
Fig. 1. The findings from this figure were presented as follow in three 
ways: comparison of RIs among direct methods, among indirect 
methods, and between direct and indirect methods. The evaluation of 
biases from RIs by D-P-LAVE(-) was made in reference to BRs at LL and/ 
or UL shown in Suppl. Tables 4. 

3.3.1. Comparison of RIs among direct methods 

3.3.1.1. Nonparametric vs. Parametric method. RIs by NP and P methods 
matched well (|BRs| at LL or UL < 0.375) for analytes with low-skewness 
distribution (λ > 0.5): TP, Alb, urea, UA, Cre, TC, HDL-C, LDL-C, Na, K, 
Ca, and IP. Whereas, for analytes with skewed distributions (λ ≤ 0.5), 
ULs by NP method were shifted to the higher side, especially for Glu, 
TBil, TG, AST, ALT, LDH, GGT, and CK (|BRUL|>0.5). 

3.3.1.2. Effect of LAVE procedure. Effects of the LAVE method with 
lowering of ULs were observed for AST, ALT, and GGT, and slightly for 
UA, TG, and ALP in females, for LDH in males. This UL lowering effect of 
the LAVE procedure was consistent with those revealed in the interim 
report of the global study [13]. 

D-, ID- = direct, indirect methods. NP-, P- = nonparametric, parametric method;
CLSI = CLSI guideline; LAVE= latent abnormal values exclusion method: Tukey=Tukey outlier exclusion;
Hoff = Hoffman method; Bhat = Bhattacharya method; TMC=truncated minimum chi-square method; 
TML = truncated maximum likelihood; 

RIs derived for males (M) by 8 calculation methods were compared. RI by D-P-LAVE(-) is shown by green-
shade as a reference for comparison for all analytes except for AST, ALT, and GGT, for which RI by D-P-
LAVE(+) was set  as a reference shown by a blue shade. RIs derived for females and males+females are shown 
collectively in Suppl Fig. 2. 

*1 

*1 Biases observed at ULs of indirect methods
were corrected by use of age-adjusted LIS dataset 

Fig. 1. (continued). 
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3.3.1.3. Performance of Tukey outlier detection method. The Tukey 
method (D-P-Tukey) using the direct study dataset gave nearly identical 
RIs as those by D-P-LAVE(+). Exception was, when the study λ adopted 
from the global study was not matched to the actual λ calculated by D-P- 
LAVE (+or -) method: i.e., the UL of D-P-Tukey was lower than D-P- 
LAVE(+) for Cre, DBil, and CK. This observation points to the impor-
tance of λ in approximating the Tukey’s outlier range as the RI. 

3.3.2. Comparison among indirect methods 
RIs by the four indirect methods agreed quite well for TP, TC, HDL-C, 

and Na. For other analytes were generally inconsistent with each other 
in a variable degree. Whereas a variable degree of discrepancies were 
observed at LLs for TP, Alb, Cre, and Ca, and at ULs for the most other 
analytes. 

Regarding Hoffmann and Bhattacharya methods, no results were 
obtained for GGT, and for creatinine (M + F) because of difficulty in 
identifying Gaussian peak by the manual procedure. 

Comparing TML and TMC methods, the two methods gave very 
similar RIs except for urea, Cre, GGT, and CK due to a difference in al-
gorithm of identifying the Gaussian peak. It is of note that in some 
analytes, the two methods estimated quite different λ values compared 
to those reported by the global study that are shown in Suppl. Table 2. 
This discrepancy was caused by dependence of power transformation on 
the width of excised peak segment (see Section 4). 

3.3.3. Cross comparison between direct and indirect methods 
By setting the RIs derived by the direct method: D-P-LAVE (-) [or D- 

P-LAVE(+) for AST, ALT, and GGT] for use as a primary reference, based 
on BR shown in Suppl Table 4, RIs by the indirect methods were 
compatible with those by the direct methods in the following 5 analytes: 
urea (M), TBil (M), Glu (M), K, and AST (F) with gender specificity 
indicated in the parenthesis. However, for the rest of analytes, a variety 
of shift patterns of RIs from the directly derived ones were observed. The 
patterns almost consistent across the indirect methods were as follows: 
(1) lower-side shift of LLs: Alb, Cre, HDL-C, and Na; (2) higher-side shift 
of ULs: DBil, TC, TG, LDL-C, ALT (F), LDH, and ALP; (3) both-sided shift 
of RI limits with extended width of the RI: UA and IP (M). As a whole, the 
proportions of biases observed either at LL or UL by each method was 
tabulated at the bottom of Suppl Table 4. The overall proportion of 
biases for the four indirect methods was 72% (ID-Hoff 81%; ID-Bhat 
76%; ID-TMC 68%; ID-TML 62%). 

3.3.4. Effect of adjusting LIS dataset for age and study period on RIs 
As shown in Table 1, there were some biases in age distribution of the 

LIS dataset compared to the dataset obtained in the direct study: average 
age for males and females were respectively 39.6 and 38.8 years for the 
direct study dataset, and 45.4 and 47.5 years for the LIS dataset. Besides, 
year-to-year bias of minor degree may exist even after exclusion of three 
analytes (Cl, Mg, and AMY) that showed appreciable between-year 
variations in test results. Therefore, we prepared an age-adjusted LIS 
dataset for each analyte by counting data sizes of every 5-year age- 
strata, and randomly deleting data from a stratum with excessive data 
size compared to the direct study dataset. In the process of adjustment, 
the period of data was also limited to 2011–2012. 

RIs were recalculated using the age-adjusted dataset by the TML 
method (ID-TMLadj), which was regarded as a representative indirect 
method. The difference in BR (ΔBR) between ID-TML and ID-TMLadj 
was evaluated for all analytes as shown in Suppl. Table 5. By 
regarding |ΔBR|≥0.375 as a significant change, BR-UL was lowered 
below the threshold of 0.375 (○) for TC, IP, and LDH in males, and for 
UA, ALT, LDH, ALP and CK in females. Overall, the proportion of biases 
after excluding those analytes was decreased appreciably from 72 to 
47% (ID-Hoff 51%, ID-Bhat 54%, ID-TMC 44%, and ID-TML 38%). This 
finding points to the importance of prior matching of age-distribution of 
LIS data, which tend to have a higher-side age bias, for improved vali-
dation of RIs by the indirect method (see Section 4). 

3.4. Distributions of sources data used in direct and indirect methods 

To explain the biases of RIs by indirect methods, distributions of 
datasets used in the indirect and direct methods were graphically 
compared using two graph modes (Fig. 2). One drawn by the line chart 
represents pre-cleaned LIS dataset served for indirect methods, and the 
other drawn by the solid-bar histogram represents the dataset obtained 
from the direct study. The red vertical line indicates the median of the 
direct-study dataset, which helps identify the bias of a presumed center 
of “non-disease” group of the indirect dataset. 

Four patterns were distinguished from the spread and peak of the 
line-chart histogram relative to the bar histogram: (1) a lower-side 
spread with peak shift (observed for TP, Alb, HDL-C, and Na). (2) a 
higher-side spread with/without shift in peak (LDL-C, Ca, LDH, and GGT 
/ TBil, DBil, and TG), (3) a both-side spread without peak shift (UA, TC, 
IP, ALP, and CK), and (4) matched shape of the two histograms (urea, 
Cre, Glu, K, AST, and ALT). 

These four shapes of the indirect dataset explain some of the biases 
observed in RIs predicted by the indirect methods: i.e., the pattern-1 led 
to lowered LLs of Alb, HDL-C, and Na; the pattern-2 led to raised ULs of 
DBil, TG, LDL-C, Ca, and LDH; the pattern-3 led to lowered LLs plus 
raised ULs of UA and IP (M), and also to raised ULs of TC, ALP, and CK. 

Whereas, for the pattern-4, RIs by the indirect methods generally 
agreed well for urea, Glu, and K. 

4. Discussion 

Requirements for a scheme of validating indirectly derived RIs is (1) 
to conduct a direct and indirect study in parallel with measurements 
done in the same clinical laboratory, and (2) to make “non-disease” 
individuals to be data-mined from the LIS comparable to the healthy 
subjects to be recruited. 

We had an opportunity of conducting such a validation study ac-
cording to the scheme, although we did the indirect study retroactively. 
For the direct part of the study, we carried it out in accordance with the 
up-to-date harmonized protocol, elaborated by C-RIDL [11], with 
recruitment of 3066 healthy volunteers nationwide and centralized/ 
standardized measurements for 25 chemistry tests [10]. No regional 
differences were observed in any analytes. For the indirect study, we 
tried to make use of the LIS source data of six years (2011–2016) that 
covered the period of the direct study (2011–2012). The comparability 
of test results over the 6-year period was confirmed, after exclusion of 
three analytes that showed significant between-year bias, as shown in 
Suppl. Table 3. The range of age for the LIS data was restricted to 
18–65 years, but an average age was higher by 5.8 years in males and 
8.7 years in females compared to the direct study, in which age distri-
bution was deliberately made nearly flat. However, we did not adjust the 
LIS dataset having assumed that the influence of the age bias in deter-
mining the RIs would be small. Nonetheless, after completion of deter-
mining RIs by all methods, we retroactively examined an effect of 
adjusting age-distribution of the LIS dataset by use of TML method, 
regarded as representing the indirect method. As a result, we recognized 
that the age-adjusted dataset led to correction of the biases observed in 
ULs for TC and LDH in both sexes, for UA, ALT, ALP, and CK in females, 
and for IP in males as shown in Suppl. Table 5. Overall frequency of RIs 
with biases by four indirect methods was reduced from 72% to 47%. This 
appreciable drop clearly indicates that the age-adjustment should have 
been done for stringent assessment of the indirect method. However, it 
may not be practical to prepare fully age-adjusted dataset as a prereq-
uisite for applying the indirect method. 

In this study, we regard it imperative for the indirect method to 
transform the central part of distributions of LIS dataset as close to 
Gaussian as possible. In Hoffmann and Bhattacharya methods, the Box- 
Cox power transformation method was used with its power (λ) adopted 
with some modification from the average λ values reported in the IFCC 
global study [11]. Whereas optimal λ values were predicted as an 
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integral part of the TML and TMC methods. 
It is of noteworthy that TML and TMC sometimes gave a low λ value 

for analytes with near Gaussian distributions (Na, Ca) or slightly skewed 
distributions (LDH, ALP). A common feature of the analytes is that their 
distributions start up far away from the origin (0.0) with displaced peak. 

Because TML and TMC methods used the one-parameter Box-Cox for-
mula without the origin of transformation, the predicted λ value for 
those special analytes can vary widely retaining comparable degree of 
fitness to the Gaussian distribution: i.e., both λ = 0.0 and λ = 1.0 give 
nearly identical RIs for those peak-displaced distributions. Therefore, λ 

Fig. 2. Comparison of datasets used in direct and indirect methods. Male datasets used for derivation of RIs by direct and indirect methods were compared by 
histograms: ① for dataset used by indirect methods, ② used by direct methods. The height of ② was exaggerated for ease of comparing the shapes. The red line 
represents the median of the direct dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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values by the two indirect methods are valid, but not relevant in inter-
preting the skewness of the distribution when the peak is displaced. On 
the other hand, the direct method using the two-parameter Box-Cox 
formula, because of optimization of the transformation origin, λ varies in 
accordance with the skewness of the distribution. 

After exclusion of RIs that were influenced by the age-bias of the LIS 
dataset, systematic biases remain observed in 47% of RIs by the indirect 
methods. The biases can be categorized into the following three patterns 
in reference to the altered histogram peak profiles of indirect datasets as 
shown in Fig. 2. 

The first pattern of the bias was lower-side shift of predicted LL 
observed for Alb and Na. It is attributed to high frequency of low values 
in the LIS dataset, which occur at proximity to the presumed non-disease 
group and obviously lowered the location of the distribution peak. 

The second pattern was a higher-side shift of the predicted UL 
observed for TG and LDL-C. Again, high frequency of abnormal values 
near ULs displaced the distribution peak upwards. The third pattern was 
outward shift of both LL and UL. It implies that abnormal results occur 
fairly frequently on both sides of the non-disease group in close prox-
imity, the situation of which caused a broader distribution peak of the 
LIS dataset. This bias pattern of RIs was observed in UA and IP before 
correction of the age-bias, but were not found among RIs after age- 
adjustment. 

As an exception to the above influence of altered distribution peaks 
in determining RIs, prediction biases were also observed for Cre, AST 
(M), and ALT despite matched histogram profiles of indirect dataset to 
the direct one (the fourth pattern in Fig. 2). The predicted RIs for these 
analytes by the four indirect methods were grossly inconsistent among 
each other with RI limits either lower or higher than those of the direct 
method RIs. The common features of these analytes are (1) skewed 
distributions with long tailing to the higher side, and (2) matched peaks 
of the two dataset. From Fig. 2, it is notable that overlapping of 
abnormal clusters with non-disease population is less intense. Therefore, 
dissecting the “non-disease” group seems to be relatively easy. However, 
its efficacy depends on the algorithm and the appropriateness of the 
power (λ), which explain the inconsistency among the four methods. 

The propensity of the prediction bias of RIs by the indirect methods, 
despite prior two-step cleaning of the source data as recommended [3], 
clearly points to the need for more rigorous attempt to clean up the LIS 
source data. Besides, in this validation study, we just evaluated indirect 
methods that all relied on truncation of values in univariate distribu-
tions. For more efficient data cleaning, it should be necessary to refer to 
other relevant information multivariately in the data selection process. 

In the literature, there have been several attempts to filter out values 
of healthy subjects from LIS source data. In 1996, Ichihara and Kawai 
[16] reported derivation RIs for 13 plasma proteins by use of health 
screening dataset, which turned out to contain sizable number of 
abnormal results. Therefore, they adopted multivariate scheme of 
excluding any individuals with abnormal results in 25 clinical chemistry 
screening tests that had been measured simultaneously, based on cor-
relations among plasma proteins and screening tests. It was a forerunner 
or non-iterative version of LAVE method. In 1998, Ritchie et al. reported 
determination of RIs for serum proteins by use of LIS dataset that con-
tained diagnostic classification of each patient in 90 categories. Selec-
tion of appropriate categories led to improved RIs [17]. In 2005 REALAB 
study [18], RIs for 23 basic tests were derived from LIS dataset after 
excluding any record with abnormal results in related tests, and also 
after restricting any record from an individual who was tested more than 
once over three years period. The study group found the latter exclusion 
scheme was effective in restricting results from non-healthy individuals. 

In 2015, Yamakado et al. [19] derived RIs for 18 standardized 
chemistry tests and 8 hematology tests from 1.5 million health screening 
database accumulated nationwide in Japan. They first excluded 80% of 
individuals on the basis of either BMI ≥ 25 kg/m2, smoking habit, 
ethanol >20 g/day, regular medication, or high blood pressure, and 
then, approximately 50% of the remaining individuals were further 

excluded by applying the LAVE method most strictly without allowing 
any abnormal value in related tests. Thus, only 10% of “supernormal” 
individuals remained for derivation of RIs. The resultant RIs were found 
quite comparable to the Japanese common RIs determined by a 
nationwide study of direct approach [20]. 

In the presence of these well controlled studies of indirect ap-
proaches, it will be necessary to conduct an additional study to inves-
tigate whether or not more rigorous attempt to clean the LIS source data 
by multifaceted approach can eliminate systematic biases observed 
among the indirect methods. 

5. Limitations 

This study was launched with a primary objective of validating a 
group of indirect methods that have been recommended in the recent 
review paper on the indirect method [3]. Therefore, we just covered the 
four indirect methods that all rely on univariate delineation of presumed 
“non-disease” group, ignoring the presence of other reports that relied 
on multifaceted information in performing data mining. In fact, we are 
currently in a process to develop such an indirect method featuring sex 
and age matched retrieval of LIS data and multivariate based scheme of 
data cleaning. Therefore, we regard this study as a preliminary step 
toward that goal. 

6. Conclusion 

We investigated the validity of RIs determined by four major indirect 
methods that rely univariately on the shape of central distribution peak 
of LIS source dataset. In order to make the RIs established by the 
nationwide “direct” study for use as a reference, LIS source data were 
retrieved from the same clinical laboratory for the matched period. RI 
predicted by four indirect methods showed a variable degree of biases at 
either LL or UL or both. By comparison of histograms of the direct and 
indirect datasets, it was revealed that the biases were associated with 
altered shape and location of the distribution peaks of LIS dataset: i.e., 
lower-side peak shift led to lowered LL (eg. Na, Alb, etc), higher-side 
peak shift led to raised UL (eg. TG, LDL-C, etc), and broadened peak 
led to both-side biases (eg. UA, IP). However, the biases observed for TC, 
ALP, etc. were attributed to inevitable age-bias of the LIS dataset. After 
recalculation using age-adjusted dataset, the overall proportion of 
biased RIs was decreased from 72% to 47% (38–54%). To reduce the 
biases in predicting the RIs, it is necessary to apply more rigorous 
attempt of data-cleaning in multivariate manner in reference to other 
relevant clinical/laboratory information. 
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